Akindolire MA, Babalola OO, Ateba CN (2015) Detection of antibiotic-resistant Staphylococcus aureus from milk: a public health implication. Int J Environ Res Public Health 12(9):10254–10275. https://doi.org/10.3390/ijerph120910254
Article
CAS
PubMed
PubMed Central
Google Scholar
Amarantini C, Satwika D, Budiarso TY, Yunita ER, Laheba EA (2019) Screening of antimicrobial-producing lactic acid bacteria isolated from traditional fish fermentation against pathogenic bacteria. J Physics 1397:5–25. https://doi.org/10.1088/1742-6596/1397/1/012045
Article
CAS
Google Scholar
Ashokkumar S, Krishnaa SR, Pavithrab V, Hemalathab V, Ingalea P (2011) Production and antibacterial activity of bacteriocin by Lactobacillus paracasei isolated from donkey milk. Int J Curr Sci 1:109–115
Google Scholar
Ayivi RD, Gyawali R, Krastanov A, Aljaloud SO, Worku M, Tahergorabi R, Silva RC, Ibrahim SA (2020) Lactic acid bacteria: food safety and human health applications. Diary 1(3):202–232. https://doi.org/10.3390/dairy1030015
Article
Google Scholar
Ayodeji BD, Piccirillo C, Ferraro V, Moreira PR, Obadina AO, Sanni LO, Pintado ME (2017) Screening and molecular identification of lactic acid bacteria from gari and fufu and gari effluenIts. Ann Microbiol 67(1):123–133. https://doi.org/10.1007/s13213-016-1243-1
Article
CAS
Google Scholar
Babalola OO (2007) Characterization of two isolated lactococcal strains with respect to bacteriocin-concentrations. Afr J Food Sci 1(1):5–10
Google Scholar
Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: A review Journal of Pharmaceutical Analysis. J Pharm Anal 6:71–79
Bello OO, Babalola OO, Adegboye MF, Fashola M, Bello KT (2018) Partial purification, characterization and application of bacteriocin from bacteria isolated from Parkia biglobosa seeds. NESciences 3:72–94
Google Scholar
Bello OO, Bankole SA, Babalola OO (2016) Bacteriocin detection from seeds of Colocynthis citrullus and evaluation of its antibacterial activities. IRJONAS 3:215–248
Benmouna Z, Dalache F, Karem N, Zadi-Karam H (2018) Optimization and some characteristics of bacteriocin produced by Enterococcus sp. CM9 collected from Mauritaninan Camel milk. Emir J Food Agric 30(4):275–282
Caniça M, Manageiro V, Abriouel H, Moran-Gilad J, Franz C (2019) Antibiotic resistance in foodborne bacteria. Trends Food Sci Technol 84:41–44. https://doi.org/10.1016/j.tifs.2018.08.001
Article
CAS
Google Scholar
Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28(4):281–370. https://doi.org/10.1080/1040-840291046759
Article
CAS
PubMed
Google Scholar
Castro-Sanchez E, Moore LSP, Husson F, Holmes AH (2016) What are the factors driving antimicrobial resistance? Perspectives from a public event in London, England. BMC Infect Dis 16(1):465–470. https://doi.org/10.1186/s12879-016-1810-x
Article
PubMed
PubMed Central
Google Scholar
Coderoni S, Perito MA (2020) Sustainable consumption in the circular economy. An analysis of consumers’ purchase intentions for waste-to-value food. J Clean Prod 252:119870. https://doi.org/10.1016/j.jclepro.2019.119870
Article
Google Scholar
Dada IO, Awotunde AO (2017) Consumption profile, consumer preference and serving occasions of indigenous non-alcoholic beverages from Nigerian foodstuffs. Int J Health Sci 7(12):168–175
Google Scholar
Deraz SF, Karlsson EN, Hedström M, Andersson MM, Mattiasson B (2005) Purification and characterisation of acidocin D20079, a bacteriocin produced by Lactobacillus acidophilus DSM 20079. J Biotechnol 117(4):343–354. https://doi.org/10.1016/j.jbiotec.2005.02.005
Article
CAS
PubMed
Google Scholar
Egwim E, Musa A, Abubakar Y, Mainuna B (2013) Nigerian indigenous fermented foods: processes and prospects. In: Mycotoxin and Food Safety in Developing Countries. Makun HA, Ed., InTech, Croatia, pp 154–179
Georgiou NA, Garssen J, Witkamp RF (2011) Pharma–nutrition interface: the gap is narrowing. Eur J Pharmacol 651(1-3):1–8. https://doi.org/10.1016/j.ejphar.2010.11.007
Article
CAS
PubMed
Google Scholar
Gomez-Gallego C, Garcia-Mantrana I, Salminen S, Collado MC (2016) The human milk microbiome and factors influencing its composition and activity. Semin Fetal Neonatal Med 21(6):400–405. https://doi.org/10.1016/j.siny.2016.05.003
Article
PubMed
Google Scholar
Hassan MU, Nayab H, Rehman TR, Williamson MP, Haq KU, Shafi N, Shafique F (2020) Characterisation of bacteriocin produced by Lactobacillus spp. isolated from the traditional Pakistani yoghurt and their antimicrobial activity against common foodborne pathogens. Biomed Res Int 2020:1–10. https://doi.org/10.1155/2020/8281623
Article
CAS
Google Scholar
Hockett KL, Baltrus DA (2017) Use of the soft-agar overlay technique to screen for bacterially produced inhibitory compounds. J Vis Exp 119:1–5
Google Scholar
Imade EE, Ikenebomeh MJ, Obayagbona ON, Igiehon ON (2013) Evaluation of changes in the microbial profile, physico-chemical and nutritional attributes during the bioconversion of soursop (Annona muricata) must to wine. Niger J Biotechnol 25:1–11
Google Scholar
Islam KN, Akbar T, Akther F, Islam NN, (2016) Characterization and confirmation of Lactobacillus spp. from selective regional youghurts for probiotic and interference with pathogenic bacterial growth. Asian J Biol Sci 9(1):1–9.
Article
Google Scholar
Jay JM (2000) Fermentation and fermented dairy products. In: Modern Food Microbiology, 6th edn. An Aspen Publication, Aspen Publishers, Inc, Gaithersburg, USA, pp 113–130
Chapter
Google Scholar
Jena PK, Trivedi D, Chaudhary H, Sahoo TK, Seshadri S (2013) Bacteriocin PJ4 active against enteric pathogen produced by Lactobacillus helveticus PJ4 isolated from gut microflora of wistar rat (Rattus norvegicus): partial purification and characterization of bacteriocin. Appl Biochem Biotechnol 169(7):2088–2100. https://doi.org/10.1007/s12010-012-0044-7
Article
CAS
PubMed
Google Scholar
Karthikeyan V, Santosh SW (2009) Isolation and partial characterization of bacteriocin produced from Lactobacillus plantarum. Afr J Microbiol Res 3(5):233–239
Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15(5):321–334. https://doi.org/10.1038/nrg3686
Article
CAS
PubMed
Google Scholar
Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
Article
CAS
Google Scholar
Mariam SH, Zegeye N, Tariku T, Andargie E, Endalafer N, Aseffa A (2014) Potential of cell-free supernatants from cultures of selected lactic acid bacteria and yeast obtained from local fermented foods as inhibitors of Listeria monocytogenes, Salmonella spp. and Staphylococcus aureus. BMC Res Notes 7:606–615
Negash AW, Tsehai BA (2020) Current applications of bacteriocin. Int J Microbiol 2020:1–7. https://doi.org/10.1155/2020/4374891
Article
CAS
Google Scholar
Nwaiwu O, Aduba CC, Igbokwe VC, Sam CE, Ukwuru MU (2020) Traditional and Artisanal Beverages in Nigeria: Microbial Diversity and Safety Issues. Bev 6:53–75
Ogbeibu AE (2005) Biostatistics, a Practical Approach to Research and Data Handling. Mindex Publishing Company Ltd, Benin. 264pp.
Onipede GO, Aremu BR, Sanni AI, Babalola OO (2020) Molecular study of the phytase gene in lactic acid bacteria isolated from Ogi and Kunun-Zaki, African fermented cereal gruel and beverage. App Food Biotechnol 7:49–60
CAS
Google Scholar
Oshoma CE, Allen OA, Oyedoh PO (2020) Growth enhancement of lactic acid bacteria for production of bacteriocin using a local condiment supplemented with nitrogen sources. Trop J Nat Prod Res 4(8):411–416
Article
CAS
Google Scholar
Parada JL, Caron CR, Bianchi A, Medeiros P, Soccol CR (2007) Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz Arch Biol Technol 50(3):521–542
Article
CAS
Google Scholar
Perito MA, Chiodo E, Serio A, Paparella A, Fantini (2020) Factors influencing consumers’ attitude towards biopreservatives. Sustain 12(24):10338–10350. https://doi.org/10.3390/su122410338
Article
Google Scholar
Prosekov AY, Babich OO, Bespomestnykh KV, (2013) Identification of industrially important lactic acid bacteria in foodstuffs. Foods Raw Mater. 1(2):42–45
Putria I, Jannaha SN, Purwantisaria S (2020) Isolation and characterization of lactic acid bacteria from Apis mellifera and their potential as antibacterial using in vitro test against growth of Listeria monocytogenes and Escherichia coli. NICHE J Trop Biol 3(1):26–34
Google Scholar
Sharma R, Garg P, Kumar P, Bhatia SK, Kulshrestha S (2020) Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 6(106):1–20
Google Scholar
Simons A, Alhanout K, Duval RE (2020) Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms. 8(5):639–670. https://doi.org/10.3390/microorganisms8050639
Article
CAS
PubMed Central
Google Scholar
Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, B’edard F, Biron E, Drider D, Fliss I (2021) Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev 45(1):1–24. https://doi.org/10.1093/femsre/fuaa039
Article
CAS
Google Scholar
Tatsinkou FB, Goghomu S, Tongwa M, Ndjouenkeu R, Cho-Ngwa (2017) Screening for bacteriocins producing probiotic bacteria from fermented sap of palm trees (Elaeis guineesis and Raffia sudanica): production and partial characterization of bacteriocins. J Appl Biotechnol & Bioeng 2(1):1–8
Todorov SD, Dicks LMT (2004) Comparison of two methods for purification of plantaricin ST31, a bacteriocin produced by Lactobacillus plantarumST31. Enzyme Microb Technol 36:318–326
Upendra RS, Khandelwal P, Jana K, Kumar NA, Devi MG, Stephaney ML (2016) Bacteriocin production from indigenous strains of lactic acid bacteria isolated from selected fermented food sources. Int J Pharm Res Health Sci 4(1):982–990
CAS
Google Scholar
Valgas C, De Souza SM, Smânia EFA (2007) Screening methods to determine antibacterial activity of natural products. Braz J Microbiol 38(2):369–380. https://doi.org/10.1590/S1517-83822007000200034
Article
Google Scholar
Vantsawa PA, Maryah UT, Timothy B (2017) Isolation and identification of lactic acid bacteria with probiotic potential from fermented cow milk (nono) in Unguwar Rimi, Kaduna State, Nigeria. Am J Mol Biol 7(02):99–106. https://doi.org/10.4236/ajmb.2017.72008
Article
CAS
Google Scholar
Vasilchenko AS, Vasilchenko AV, Valyshev AV, Rogozhin EA (2018) A novel high-molecular-mass bacteriocin produced by Enterococcus faecium: biochemical features and mode of action. Probiotics Antimicrob Proteins 10(3):427–434. https://doi.org/10.1007/s12602-018-9392-0
Article
CAS
PubMed
Google Scholar
Voidarou C, Alexopoulos A, Tsinas A, Rozos G, Tzora A, Skoufos L, Varzakas T, Bezirtzoglou E (2020) Effectiveness of bacteriocin-producing lactic acid bacteria and bifidobacterium isolated from honeycombs against spoilage microorganisms and pathogens isolated from fruits and vegetables. Appl Sci 10(20):1–18. https://doi.org/10.3390/app10207309
Article
CAS
Google Scholar
Witkamp RF, Norren KV (2018) Let thy food be thy medicine when possible. Eur J Pharmacol 836:102–114. https://doi.org/10.1016/j.ejphar.2018.06.026
Article
CAS
PubMed
Google Scholar
Yang E, Fan L, Yan J, Jiang Y, Doucette C, Fillmore S, Walker B (2018) Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Expr 8(1):10–24. https://doi.org/10.1186/s13568-018-0536-0
Article
CAS
Google Scholar
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1281–1286. https://doi.org/10.1099/ijsem.0.001755
Article
CAS
Google Scholar
Yusuf MA (2013) Lactic acid bacteria: bacteriocin producer: a mini review. J Pharm 3(4):44–50
Google Scholar
Zhang P, Timakov B, Stankiewicz RL, Turgut IY (2000) A trans-activator on the Drosophila Y chromosome regulates gene expression in the male germ line. Genetica 109(2):141–150
Article
CAS
Google Scholar
Zheng J, Wittouck S, Salvetti E, Franz CM, HMB H, Mattarelli P, Toole PWO, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae Int. J Syst Evol Microbiol 70(4):2782–2858. https://doi.org/10.1099/ijsem.0.004107
Article
CAS
Google Scholar